
www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://isedj.org/; http://iscap.info

Liberating Legacy System Data with Rails,

Intelligent Use of Conflict Data with Automated
Class Scheduling Tools

Stuart L. Wolthuis

stuart.wolthuis@byuh.edu

Christopher Slade

christopher.slade@byuh.edu

Faculty of Mathematics and Computing

Brigham Young University-Hawaii
Laie, HI 96762

Abstract

In this research project we describe the legacy software landscape, its current state, and challenges
associated with aging information systems and access to its data. We briefly describe the popularity of
dynamic languages and how a specific dynamic programming language, Ruby on Rails (RoR or Rails),

is used to create a system to extract data from a legacy system to increase efficiency and productivity

in an academic class scheduling system. As an example, we describe, first, how a system developed in
Rails, called Class Scheduler, pulls data from a legacy student management system (MAPPER)
developed in Tcl (pronounced “tickle”) and uses this data to vastly increase the efficiency of the
scheduling process and, second, how it reduces conflicts in class schedules. We discuss the
advantages of automatically extracting and processing the data from the legacy system and the

limitations associated with this process.

Keywords: Ruby on Rails; RoR; Rails; legacy systems; legacy data; software engineering;
programming; scheduler; class scheduling;

I. INTRODUCTION

With the advent of the cloud and the use of

Software as a Service (SaaS) an enormous
amount of data produced and stored in legacy

information systems can be left behind and left
inaccessible unless solutions to extract this data
are realized. Without modernization, users can
keep using legacy systems as they exist and
hope the hardware and operating systems

providing access to their valuable data continue
to function. As a benchmark to the state of large
information systems a 2016 Government
Accountability Office (GAO) report to Congress
stated that in 2015 $61.2 billion was spent on
operations and maintenance of current (legacy)

systems while $19.2 billion was spent on
development, modernization, and enhancement
(Powner 2016). Another insightful indicator

reported by the GAO is that the amount of IT
spending on development, modernization, and

enhancement from 2010 to 2017 declined by
$7.3 billion, a 28% reduction. This implies that
enhanced digitization, which may equate to
access of legacy data, is not a current priority
for these maturing systems due, in part, to its

very costly nature given the three imperatives of
data migration: don’t interrupt current business
processes, maintain data consistency, and effort
and cost should be minimized (Martens, Book,
Gruhn, 2018).

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://isedj.org/; http://iscap.info

Aging government information systems include

two master files (individual tax files and
business tax files) in the Department of the
Treasury that are approximately 56 years old

with no specific plans for updates (Powner,
2016). Also cited in this report is the fact that
the nuclear command and control system is 53
years old and still runs on an IBM Series/1
Computer with an 8-inch floppy drive.

Systems that manage inmates in prisons,
including their security, custody levels, and work

assignments is over 35 years old and your SSN
is managed by a system that is 31 years old
(Powner, 2016).

Additionally, the 12 government agencies in this
report indicated using unsupported operating

systems; 5 reported using 1980s and 1990s

Microsoft operating systems, with no support
from the vendor for over a decade.

Any organization that continues to use
antiquated technology systems must pay a
premium for staff or contractors with the right
knowledge to support and maintain legacy
systems (Powner, 2016). For example, the

author of this paper personally managed the
software development of a product improvement
program in 1993 with a defense contractor that
required pulling an employee out of retirement
to change 160 lines of code in a complex system
originally written in Fortran 66.

A final note on government legacy systems: the

Department of Commerce runs a system
providing warnings to the public and emergency
managers with several obsolete operating
systems: Windows Server 2003 no longer
supported by the vendor and a version of Oracle
no longer fully supported by the vendor

(Powner, 2016). These systems observe
meteorological incidents that could generate a
tsunami or hurricane.

Both the data contained in legacy systems and
the systems themselves require expertise and
innovation to maintain their integrity. In this
paper we will specifically address the challenge

of accessing and using legacy data.

Background
Efforts to quantify the amount of legacy data in
the world, or more specifically, to quantify the
amount of valuable, relevant, or useful data in
our world, appears to be the subject of a few
blogs and white papers, but is woefully

neglected in the annals of scholarly research.
This may simply be due to the modernity of this
situation. Our review of literature found very
little direct evaluation of the legacy data

problem in academia. The GAO is relegated to

review information systems providing public
services, those maintained and paid for by
federal or state budgets, and seems to be the

only entity addressing the white elephant in the
room.

An estimate of the amount of data created
reports a “truly mind-boggling” 2.5 quintillion
bytes of data created daily at our current pace
(Marr, 2018). This is divided in to broad
categories including: the Internet (searches on

Google surpass 40,000 every second), Social
Media (users view 4M plus videos each minute),
Communication (156M emails sent every
minute), Digital Photos (4.7 trillion stored),
Services (18M forecast request per minute from

the Weather Channel and 600 Wikipedia new

page edits per minute by users), and the
Internet of Things is expected to add 200B
devices by 2020 (Marr, 2018).

An argument could be made that some of the
data just described is not valuable, relevant, or
useful. But organizations that continue to
survive, even flourish, seem to find ways to

preserve and use their legacy data. We now
share one solution to this problem of accessing
and using legacy data.

Purpose of this Research
Demonstrating a middleware solution to access
and use legacy data is the purpose of this
research. Middleware, including the API and

wrapper, became a popular solution to unlock
business value (Thiran, Risch, Costilla, Henrard,
Kabisch, Petrini, Hainaut, 2005) by exhuming
legacy data from aging and sometimes
antiquated systems. Persistence (Thomas,
2008) has also emerged, as a viable tool in the

hands of programmers who need to unearth
data secrets that otherwise would remain buried
with maturing software. Users require and
expect access to mountains of data right now;
this is partially driving the need to reach into
legacy systems and provide insight via the
smart device in the palm of their hand.

All three of these solutions (API, wrapper, and
persistence) find their genesis in dynamic

programming languages, but come at a cost
with additional runtime checking required
(Paulson, 2007) since more instructions must be
evaluated at runtime, a fact that is probably
moot with the realization of new computing

platforms (cloud and SaaS) made possible with
Next Generation IT (Thomas, 2008).

The Tiobe Index (Paulson 2007) indicates a
significant rise in the use of dynamic languages
at the time of the referenced report; further

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://isedj.org/; http://iscap.info

comparison to the June 2019 Tiobe Index

(Tiobe, 2019) indicates the use of dynamic
languages is still 50% of the top 20 most
popular languages in the world, with Python, the

most popular dynamic programming language,
showing “an all time high in the Tiobe index of
8.5%” with more growth expected in the future.
This is significant since dynamic languages are
used to create middleware needed to extract
legacy data from older information systems.

The other nine dynamic languages in the top 20

June 2019 Tiobe Index report have a sum total
popularity of 14.8%. In the middle of this list of
9 is Ruby on Rails with a score of 1.388%.

Using Ruby on Rails for Middleware
As a platform to create middleware Ruby on

Rails (RoR) is distinctively suited with a

framework following the Model View Controller
(MVC) design pattern (Scharlau, 2007). By
definition, Rails is a framework built on Ruby,
allowing programmers to develop database-
focused websites with scaffolding and code
generation (Meenakshi, 2015).

In addition to use of the MVC architecture, RoR

uses the Create, Read, Update, Delete routing
engine to interact with web pages and follows
the concept of DRY: “Don’t repeat yourself”
(Meenakshi, 2015). RoR is taught at many
universities as an upper level class to teach
skills required to build dynamic websites as part
of the computer science curriculum. Specifically,

we will explain how it can also be used to build
middleware and a system to improve scheduling
of classes in a complex environment.

The Environment
Our private university hosts about 3,000
students, half from international locations, who

pursue bachelor degrees in the sciences, arts
and letters, and professional programs such as
business and accounting. Specifically, the
authors offer majors in computer science,
information technology, and information
systems.

Over 20 years ago, a colleague, who is now

retired, created an online student management
system in Tcl (pronounced Tickle) that allowed

academic advisors, faculty, and students to
manage and plan a student’s academic program.
This system mapped a student’s classes to
complete a major, general education, and
minors and is named MAPPER. This ability to

“map” or plan the future is especially valuable
and sets MAPPER apart from the ERP system
(PeopleSoft) used by the registrar, which does
not “map” the student’s future classes.

Additionally, MAPPER allows academic advisors

to document appeals, notes, and guidance to
students. Grades are also recorded in this
system and transfer credits documented.

The development and feature improvement of
MAPPER occurred over decades and was
continual, based on input from users, primarily
student advisors and faculty. Ironically, other
systems used to schedule classes did not
improve; spreadsheets are still the norm among
many academic faculties, departments, and

colleges. This may be evident in the fact that
22% of universities practice “just in time” (JIT)
scheduling, planning their next term only one
academic term in advance (Hanover, 2018).

Scheduling Systems

Research studies show that scheduling is one of

the most important and demanding factors
impacting student retention at universities
(Hanover, 2018). With imperfect tools classes
can inadvertently get scheduled at times that
interfere with core classes or additional required
classes, such as labs. As curriculums and class
offerings become more varied and complex the

likelihood of conflicts increase. Add to that
limited classroom space and multi-use, or
specialty (cyber-security sandbox lab, science
labs) or high-demand classrooms the scheduling
challenge becomes a multifarious problem.

A review of several scheduling systems,
including UniTime and Mimosa Scheduling

Software revealed very capable systems (Ngoc,
2015) but they did not have the ability to import
conflict matrix data from MAPPER. Therefore, a
custom development was necessary.

Scheduling System Challenges
The Higher Education Scheduling Index (HESI)

annual report of 157 institutions, including four-
year private, four-year public, and community
colleges discovered that classroom utilization is
67% and seat utilization is 62% even though
institutions expressed they felt they were out of
space (Ad Astra, 2016). Balancing course access
and campus efficiency is a challenge and

requirement for a class scheduling system when
36% of entry-level courses are packed with

enrollment at 95% in public institutions (Smith,
2016).

Using the Conflict Matrix
The conflict matrix created by MAPPER shows
the classes planned for a semester and the

conflicts by class for students planning to take
the classes. The interpretation of the conflict
matrix is done by selecting a class, see Table 1
in the appendices, for example: select CIS 205,
the numbers below the asterisk (*) show the

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; http://iscap.info

number of students in the classes on the lines

below that are also MAPPED (planning) to take
these other classes. Therefore, of the students
planning to take CIS 205, there are 5 also

planning to take CS 203, and 6 in CIS 205 are
planning to take IS 350. Additionally, the
conflict matrix indicates the number of students
mapped for a class; for example, CIS 205 has
30 students, shown as (30), followed by a
simple code displaying the semesters the class
is offered, FWS means Fall, Winter, and Spring,

then the name of the class.

Scheduling Classes Pre-Automation
Before Class Scheduler, using the conflict matrix
from MAPPER was a manual operation. The
seven CS, IS, and IT faculty members would

query MAPPER for a current Conflict Matrix and

plan a semester with 28 classes on a white
board, this process would take about 2 hours.
Colleagues, program leads and department
chairs at the same university employ various
methods to schedule classes, including
spreadsheets, white boards, and floating sticky
notes. As the champions of teaching automation

to increase efficiency we felt the need to
practice what we preach and abandon the white
board for an automated solution (Fox, 2012).

Requirements for the Class Scheduler
After teaching RoR as an upper-level class for
CS students, an idea was born to develop an
automated scheduling system, a drag-and-drop

online interface that would allow a user to select

classes, class locations, times, days, and
instructors. The system would also allow the
user to color code the different instructor
objects.

A requirement for the new system to import

conflict matrix data from MAPPER was
necessary; additionally, the new system should
display conflicts as classes are dropped on a
time slot. Conflicts would need to be clearly
displayed, showing the number of students
planning to take both classes. Simply moving
the class object to another time slot or offering

two sections of the class could remove the
conflict.

2. METHODOLOGY

The Class Scheduler system idea was created
while scheduling our classes. Instead of using a
whiteboard, and erasing and adding classes to
time slots, we thought it would be more efficient

to have a digital application with a drag-and-
drop interface so we could easily plan a
semester of classes. We needed to follow the
elements of Agile development to satisfy the
needs of the customers (our department) with

constant feedback, accept requirement changes

on the go at any stage of development, provide
constant feedback to our customers, and finally,
test the system as each new feature was coded

(Hneif, 2009).

Creating Version 1 in Java
A simple Java application was developed and
used during our next scheduling meeting. But
we still had two problems. First, we needed to
look up scheduling conflicts in MAPPER manually
and make sure our students could take all of

their required classes without conflict. Second,
our application did not persist the schedule into
a document or database that could easily be
shared with the members of our department.

Feature Implementation with RoR

By creating a web application with Ruby on

Rails, we provided access to all members of our
department and delivered a system that
provided productivity with extensive reuse of
software (Fox, 2012).

As development continued, it followed a lonely
version of Agile, coined Agile Solo (Nyström,
2011), and developed by Watts S. Humphrey in

1993, he used the phrase Personal Software
Process (PSP). In this process, a single
developer follows an iterative process of
planning, development, and postmortem.
Development included several steps:
requirement, design, coding, and testing.
Although a single developer followed the

development process in our case, the other
members of the department were included as
users in the planning and requirements steps.

The next version of the Class Scheduler was
developed to persist the data into a database
and to also include the scheduling conflict data

from the legacy MAPPER system. The database
has semesters, instructors, courses, terms, and
periods (days and times). Using Ruby on Rails,
we developed the class schedule so that we can
create, update and delete all of these entities.
An additional entity, called an offering, is able to
connect to a semester and course to an

instructor, room, and period through database
relationships.

For each semester, we create an offering by
dragging a course from a list of all courses, and
dropping it into a list of offerings (from left to
right, Appendices, Figure 4). From there, we
assign the course to an instructor, which color

codes the course so we can easily see what each
instructor is teaching when looking at a
semester schedule.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; http://iscap.info

We then move to a scheduling screen that lays

out a blank schedule matrix with rooms along
the top as columns and time slots as rows. On
the left side of the matrix is a list of courses that

still need to be scheduled. By dragging and
dropping courses into time slots, we schedule
classes. Figure 5 in the Appendices displays the
Class Scheduler view that allows the adding of
periods (class meeting times).

To process the conflict data from the legacy
MAPPER system and to store this data, we

create another entity called a conflict. Each
conflict is connected to a semester and two
course offerings. It also contains the number of
students that want to take both courses that
semester.

As each class gets scheduled, Class Scheduler

queries the conflict table to see if any two
classes scheduled for the same time period have
any conflicts. We display the conflicts on the
right side of the scheduling matrix, see Figure 1.
In this case, part of an actual semester
schedule, all the conflicts are minimal, since a
CIS 200 is offered at two different time slots

and also offered as an online course as well (not
shown).

Figure 1, T/TH class conflicts, Fall 2019

“CIS200-CIS101:1” is interpreted as these two
classes have one conflict. Figure 2 shows a more
complex set of conflicts, with “IT 320-IS 350: 9”
indicating that 9 students have a conflict if these

two classes are scheduled at the same time.
These conflicts were avoided by scheduling
multiple sections of CIS 350. In both Figure 1
and Figure 2 the conflicts were resolved with

multiple sections, but this is not always possible,
most of our classes, 13 of 20, have single

sections. In Figure 3 in the appendices, there
are no conflicts between classes with one
section, the Class Scheduler showed such
conflicts during the scheduling process and
classes were moved around until there were no
conflicts between classes with one section.

Figure 2, MWF class conflicts, Fall 2019

Implementing Conflict Data
The Class Scheduler needs a way to import the
conflicts stored in the legacy MAPPER system.

To do this, we copy and paste the conflict matrix
from MAPPER into a text area within the Class
Scheduler. In Figure 6, we show actual conflict

data for 100 conflict records. The Class
Scheduler parses the conflict matrix and collects
the number of conflicts between each pair of
courses. The Class Scheduler matches the
courses from MAPPER to courses stored in its
own database by name. The conflict import is
done after offerings are made for each semester

and before classes are scheduled. Figure 3 in
the appendices shows a completed semester
schedule, which has employed the conflict data
for that semester. As a note, a key to the
success of this system is the fact that our

academic advisors work diligently to make sure
student maps are up to date and contain current

class schedules.

3.SUMMARY AND CONCLUSIONS

Creating a system that exemplified the
principles taught in a RoR class increased class
scheduling accuracy. Additionally, the time
required to schedule was reduced significantly,

most recently, 3 semesters (29 classes, 29
classes, and 17 classes) were scheduled in less
then 2 hours.

Planned future research and development
activities include:

1. Improve the Class Scheduler system to

automatically import conflicts by “screen

scrapping” MAPPER’s output.

2. Improve the user interface to allow for more
rooms to be scheduled, this will allow other
departments on campus to use Class Scheduler.

3. Add the ability for Class Scheduler to
automatically schedule classes in ERP systems.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 17

https://isedj.org/; http://iscap.info

4. Research further the state of legacy systems

to quantify and describe the extent of data
sheltered in legacy systems.

Acknowledgements

We recognize and thank Dr. Don Colton for his
innovation and creativity on the MAPPER
information system, and especially thank him
for his mentorship and leadership. We also
thank Dr. Geoff Draper for his initial creation of
Class Scheduler, the impetus for this and many
other wonderful ideas.

4.REFERENCES

Ad Astra Information Systems (2016, 2018).
The Higher Education Scheduling Index.
Retrieved 10 June 2019 from

https://thehighereducation.com/

Fox, A., & Patterson, D. (2012). Crossing the

Software Education Chasm. Communications
of the ACM, 55(5), 44-49.

Hanover Research (2018). Best Practices in
Course Scheduling. Retrieved 10 June 2019
from https://www.hanoverresearch.com/

Hneif, M., & Ow, S. (2009). Review of Agile
Aethodologies in Software

Development. International Journal of
Research and Reviews in Applied
Sciences, 1(1), 1-8.

Marr, B. (2018). How much data do we create
every day? The mind-blowing stats everyone

should read. Retrieved June 12, 2019 from
https://www.forbes.com/

Martens, A., Book, M., & Gruhn, V. (2018). A
Data Decomposition Method for Stepwise
Migration of Complex Legacy Data. In IEEE
ICSE-SEIP '18 Proceedings of the 40th
International Conference on Software
Engineering: Software Engineering in

Practice, 33-42.

Meenakshi, S. (2015). Ruby on Rails – An Agile
Developer's Framework. International
Journal of Computer Applications, 112(1).

Ngoc, V. (2015). Teaching and Learning

Scheduler System. Vietnam National
University, Hanoi, University of Engineering
and Technology, Hanoi.

Nyström, A. (2011). Agile Solo-Defining and
Evaluating an Agile Software Development
Process for a Single Software Developer.
A Nyström - 2011 -
publications.lib.chalmers.se

Paulson, L. D. (2007). Developers Shift to
Dynamic Programming

Languages. Computer, 40(2), 12-15.

Powner, D. (2016). Information Technology,
Federal Agencies Need to Address Aging
Legacy Systems. Testimony Before the

Committee on Oversight and Government
Reform, House of Representatives.

Retrieved 10 June 2019 from
http://www.gao.gov/

Scharlau, B. (2007). Teaching Ruby on Rails.
Conference Proceedings of the Java and
Internet in Computing Curriculum
Conference in London Metropolitan
University. 24 - 29.

Smith, A. (2016). Fixing Capacity With Better
Class Scheduling. Retrieved 10 June 2019
from https://insidehighered.com/

Thiran, P., Risch, T., Costilla, C., Henrard, J.,
Kabisch, T., Petrini, J., ... & Hainaut, J. L.

(2005). Report on the Workshop on Wrapper
Techniques for Legacy Data

Systems. SIGMOD Record, 34(3), 85-86.

Thomas, D. (2008). Enabling application agility:
Software as a Service, Cloud Computing and
Dynamic Languages. Journal of object
technology, 7(4), 29-32.

Tiobe (2019). Tiobe Index for June 2019.

Retrieved June 12, 2019 from
https://www.tiobe.com/tiobe-index/

Editor’s Note:

This paper was selected for inclusion in the journal as an EDSIGCON 2019 Meritorious Paper. The

acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2019.

http://www.icse2018.org/

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 18

https://isedj.org/; http://iscap.info

Appendices

Table 1: Conflict Matrix for All Students (2195) Fall 2019

Figure 3: Class Scheduler, Completed Semester from Schedule View

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 19

https://isedj.org/; http://iscap.info

Figure 4: Class Scheduler Add Courses View

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 20

https://isedj.org/; http://iscap.info

Figure 5: Class Scheduler Add Periods View

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 21

https://isedj.org/; http://iscap.info

Figure 6: Class Scheduler Add Conflicts View

